A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking
نویسندگان
چکیده
Web Usage Mining (WUM), a natural application of data mining techniques to the data collected from user interactions with the web, has greatly concerned both academia and industry in recent years. Through WUM, we are able to gain a better understanding of both the web and web user access patterns; a knowledge that is crucial for realization of full economic potential of the web. In this chapter, we describe a framework for WUM that particularly satisfies the challenging requirements of the web personalization applications. For on-line and anonymous web personalization to be effective, WUM must be accomplished in real-time as accurately as possible. On the other hand, the analysis tier of the WUM system should allow compromise between scalability and accuracy to be applicable to real-life web-sites with numerous visitors. Within our WUM framework, we introduce a distributed user tracking approach for accurate, efficient, and scalable collection of the usage data. We also propose a new model, the Feature Matrices (FM) model, to capture and analyze users access patterns. With FM, various features of the usage data can be captured with flexible precision so that we can trade off accuracy for scalability based on the specific application requirements. Moreover, due to low update complexity of the model, FM can adapt to user behavior changes in real-time. Finally, we define a novel similarity measure based on FM that is specifically designed for accurate classification of partial navigation patterns in real-time. Our extensive experiments with both synthetic and real data verify correctness and efficacy of our WUM framework for efficient web personalization.
منابع مشابه
A Framework for Personal Web Usage Mining
In this paper, we propose to mine Web usage data on client side, or personal Web usage mining, as a complement to the server side Web usage mining. By mining client side Web usage data, more complete knowledge about Web usage can be obtained. A framework for personal Web usage mining is proposed. Some related issues and applications of personal Web usage mining
متن کاملEfficient and Anonymous Web-Usage Mining for Web Personalization
The World Wide Web (WWW) is the largest distributed information space and has grown to encompass diverse information resources. Although the web is growing exponentially, the individual’s capacity to read and digest content is essentially fixed. The full economic potential of the web will not be realized unless enabling technologies are provided to facilitate access to web resources. Currently ...
متن کاملAnalysis of Web User Identification Methods
Web usage mining has become a popular research area, as a huge amount of data is available online. These data can be used for several purposes, such as web personalization, web structure enhancement, web navigation prediction etc. However, the raw log files are not directly usable; they have to be preprocessed in order to transform them into a suitable format for different data mining tasks. On...
متن کاملClient-side monitoring for Web mining
“Garbage in. garbage out” is a well-known phrase in computer analysis, and one that comes to mind when mining Web data to draw conclusions about Web users. The challenge is that data analysts wish to infer patterns of client-side behavior from server-side data. However, because only a fraction of the user’s actions ever reaches the Web server, analysts must rely on incomplete data. In this pape...
متن کاملdesigning and implementing a 3D indoor navigation web application
During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001